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1. Introduction

The early motivation to introduce noncommutativity of coordinates was the search for
invariant regulator in field theory. Many other reasons for studying noncommutative man-
ifolds have appeared since; still, the renormalizability of field theories, on noncommutative
Minkowski space for example, has not been established. The aim of this paper is to add
further results to this discussion.

To introduce the problem and the notation, we give a couple of basic definitions.
Noncommutative Minkowski space is the algebra generated by coordinates z#, y = 0,1, 2, 3,
which obey the commutation relations of canonical type:

[#H, 2] = 10" = const. (1.1)

The algebra ([.]) can be represented by the algebra of functions on commutative four-
dimensional manifold with the Moyal-Weyl product as multiplication. The latter is de-
fined as

b(@) * X (@) = 3" T §(2)x (1) - (1.2)

The fields are functions of coordinates; for example, the vector potential Au(x) of the gauge
group U(N) is, in this context, defined by

Ay(z) = A (x)t?, (1.3)

where t4 are ordinary N x N matrices, generators of U(N). We denote the generators of
SU(N) by t®: the capital letters denote the U(N) indices, while the small letters denote the
SU(N) indices, t* € {I,t*}. The field strength transforms in the adjoint representation;
it is given by

F = 0,A, —0,A, —i(A,x A, — A, A)). (1.4)



The generators of SU(N) satisfy
[ta’ tb] _ ifabctc’ {ta’ tb} _ dabctc7 (1.5)

f¢ are the structure constants of SU(N), d¢ are the symmetric symbols, d®¢ = Tr {t*
,t°}t¢: we use the normalization Tr (t%t%) = 6. For gauge groups different from U(N)
the commutator term in ([.4) does not take values in the Lie algebra of the group, as the
*-product is not commutative. It is clear therefore that not all gauge groups can be realized
on the space ([.1) in the described manner.

As the gauge fields are represented by functions on R*, the integration and the action
can be defined straightforwardly. The action for the pure gauge theory reads

1 ~ ~ 1 2N
S = 4 Tr /d4xFuu*FW - _ZTY /d4xFMVFW’ (1.6)

the last equality is valid due to properties of the Moyal-Weyl multiplication. One can
easily include matter fields. This basically concludes the definition of the classical theory.
Compared to the commutative gauge theory, it has new, specific features. For quantization,
one usually takes % = 0 as in that case there are no temporal derivatives of higher
order in the lagrangian. This means that the generalized momenta are the same as in the
classical theory and the momentum dependence in the path integral is Gaussian. Stated
differently, 8% = 0 provides the unitarity. In perturbation expansion Feynman rules get
modified in accordance with the definition of x-multiplication. The most important result
concerning renormalization is the mixing of ultraviolet and infrared divergencies: in higher-
order diagrams they are entangled in such a way that no efficient renormalization procedure
can be defined. This phenomenon is typical for noncommutative theories and has been
thoroughly discussed for ¢* theory, [[l]. See also the alternative heat-kernel derivation in
B]. The existence of gauge symmetry does not remove UV /IR mixing: for more detailed
analysis for U(1) we refer to [[], for nonabelian theories to [d]. Consequently, the status
of renormalizability of noncommutative gauge theories is the same as for noncommutative
scalar field theory: in general, the theories are not renormalizable.

A different representation of noncommutative gauge theories on commutative R* was
developed in [fj]. Its main idea is to enlarge the basis of the algebra to the enveloping alge-
bra of the group. Although only the infinitesimal gauge transformations can be defined in
this way, the construction goes for arbitrary gauge groups and their tensor products. As
it was shown in [[], every physical field can written as a formal expansion in noncommu-
tativity parameter 0*7; the leading term in the expansion of noncommutative field is its
commutative counterpart. Therefore, for ##¥ = 0 noncommutative theory reduces to the
usual, commutative one: the representation is a deformation of the commutative theory.
This fact can also be related to the Seiberg-Witten result [[f] that classically noncommuta-
tive and commutative gauge theories are equivalent. The expansions of the vector potential
and the field strength to linear order in 6 read

Aglw) = Ay(w) — 70" {Au(x), B, Ap(w) + Fup(a)} + .. (L.7)

Fio () = Fpo () + 50" (Fyp ), Fug(2)} = 56" {Au(2), (B + Do) o ()} + ..



and, as it was noted in [, are not unique. The gauge field action ([.6)) can be expanded,
too. The parameter 6 is treated as a coupling constant and thus propagators of all fields are
defined as in the commutative theory. It can be shown that each of the interaction terms
is invariant to commutative gauge transformations; noncommutative gauge symmetry is
recorded only in the complete sum ([L.7).

Obviously, a drawback of the ‘f-expanded’ approach is that the results are necessarily
expressed in powers of 6 and calculated to a certain order: in practice, at most to second
order. Thus one cannot obtain results which are nonanalytic in §: and UV/IR mixing is an
effect proportional to #~!. On the other hand, it does make very good sense to expand in
0 if one wants to compare with the experiment: if exists, noncommutativity is very small.
The question of renormalizability can be approached as well; in particular, negative results
which one might obtain can be regarded conclusive. Let us stress that, in principle, there
is no reason to expect to get the same results as for the nonexpanded theory, as the two
representations of the gauge symmetry are different; in fact, SU(N) cannot even be defined
in the nonexpanded representation. It was shown in [§—[I(] that U(1) and SU(2) gauge
theories with fermions are not renormalizable: the divergencies which cannot be removed
exist both at #-linear and #-quadratic level. The results concerning pure gauge theories
on the other hand, are somewhat partial: for example, the photon propagator in U(1)
theory is renormalizable in a generalized sense, to linear and possibly to all orders, [LL1].
Similar statement holds for the gluon propagator in SU(2) to linear order, [[(]. In this
paper we investigate renormalizability of the first order-corrected SU(N) theory: as we
shall see from the form of divergencies, theory is in this order renormalizable. This result,
we think, keeps the discussion on the renormalizability of field theories on noncommutative
Minkowski space open.

The plan of the paper is the following. In the next section we expand the classical
action to second order in quantum fields and do the path integral quantization. In the
third section we present the result of the calculation of divergencies in the one-loop effective
action and we show that the action can be renormalized in a very simple way. A summary
of the results is given in the concluding section.

2. Expansion in background fields
The classical action for the gauge field expanded to first order in noncommutativity is [f:
Su = —=Tx [ diob, « B
cl = _Z r X v *
4 1 % 1 v po 1 nv po

=Tr [ d'z _ZFWF + gﬁ FFyeFP7 — 59 Fu B F (2.1)

= / d'z (—%ngww + %HWd“bC(F;}VF’f’UFP“ — 4F;ij30Fp“)> .
We are dealing with the gauge group SU(N): a,b,c = 1,...,N? — 1 are the group

indices. The group metric is Euclidean so there is no need to distinguish between upper
and lower indices. The gauge fields are assumed to be in the adjoint representation; we



will comment further on this restriction. We quantize the theory by functional integration
of the vector potential. The integration is done around the classical configuration, i.e., we
use the background field method to find the effective action. The main contribution to the
integral is given by the Gaussian integral: to find it, technically, we need to write the vector
potential in the action as a sum of the background part A}, and the quantum fluctuation Aj,,
and find the part quadratic in Ajj. By this we determine the second functional derivative of
the classical action with respect to the vector potential. In the saddle-point approximation,
the result of the functional integration is

al __ a i 2 a
T[A7] = S[AL] + 5 log det S@1Aa]. (2.2)

We are dealing with the gauge symmetry and therefore the gauge fixing term has to be
included in the action as well:

1
S=Sut Sy Su=-3 / d'2(D, AH)2, (2.3)
with D, AS = 0,A;, + f“bcAZ.A,cj. The one-loop effective action,
a Z a Z a
I'[A%] = 5 log det SP[AY] = 5T log SPAe], (2.4)

can be obtained in the usual way, by perturbative expansion of the logarithm. As we
already explained the method in details in [[J], we discuss here only the points specific to
the present calculation.

In the case we are studying, the quadratic part of the action is very complicated. Very
involved too are the operator traces whose divergent parts we calculate by dimensional
regularization. It is necessary therefore to develop a strategy already at this stage. We will
calculate the divergencies at the special, constant value of the classical vector potential,

Aj, = const. (2.5)

At the end of the calculation the full expressions will be restored from covariance, replacing
f“bCAZAi by Fj,. The idea is not new; for a similar derivation see 3. The use of
background field method guarantees the covariance [[[4], as doing the path integral, we fix
the local symmetry of the quantum field .AZ while the gauge symmetry of the background
field A7, is manifestly preserved. Having in mind the dimension-regularization formulae,
we see that in fact it is an advantage to deal with nonabelian theory, as the terms without
derivatives are by far the simplest. At the moment, the assumption (B-5§) means just that
derivatives commute with A} in S [AZ].

Extracting the quadratic part of the action is a straightforward but tedious calculation.
The result has the form

1
S = S AL 79000 + (Ny + Np + Ty + Ty + T0)™ | A, (2.6)

The operators N1 and N, originate from the commutative action, while T, T3 and T}y
denote interaction terms linear in #. The index of the operator indicates the number of
background fields Af; which it contains. The operators are given by

(V7)o = 2 fabe gC B i — _2i(A,,) g™ ", (2.7)



where we introduced the matrix notation
(Ap)ap = =i fPCAS = AS(T)ap, (2.8)

because the structure constants are the matrix elements of generators in the adjoint rep-
resentation. The same notation will be used for the field strengths as it is very useful. For

example,

(A1 - AZn)ab = (Agn - Al)bay (Al N A2n+1)ab = _(A2n+1 . Al)ba- (29)
The rest of the vertices in (P.) read

(No)as = =2/ Fgg — (AuA") " gag, (2.10)

1
(To)as = 0™ [~20,a 50" 0" — 25 F o 00" — 077 Fy,gagl) + 077 F, 0ap
+ 200 5,010 + 20° g F, 000 — 207 3F5, 00 — 207 o F5 [0 — 467 F 6o 30" O
+ 2007 F5,0005 + 2077 FS 0505 — 2000 F 30" 07 — 207 3F5, 0% 0, ,

(T)aly = —2d"*" |26, F}l5(A")5c0” + 2055 F i (A7)0
+ 07 gogF (A" )0y — 07 Fl (Aa)ue0s
— 200 o Fi (A")c0p + 2070 F§, (A" )10y
+ 207 gog P, (A" )3e05 — 2077 F§,(Aa)ueds — 207 3, (A0
+ 2075 F (A )be0y + 207 gogFil, (A7 )yc0" — 2077 FYl, (Ao )50’
— 2003F 5, (A )oc0" + 2000 Filg(A7 )50 + 20,5 FS, (A )pc0”
— 207 Fy(As)pedy — (a = bya ﬂ)] ,

and

a 1 ICE e log [&
(Ty)ely = 3¢ U400 F5(AP)ag (A" )pe — 07 gapF i (A" ag(Ay)be

+ HPUFSJ(AB)da(Aa)cb + 46paFﬁp(A6)ad(AM)bc

— 40P 0 5, (A" )ad(Av )be — 4077 gap F (A ) ad (A" )be

+ 40p0F§p(A0)ad(Aa)bc + 20a6F§y(A“)ad(Ay)bc

= 200pF5(A")aa (AP )pe — 20,5F 5, (A”)aa(A” )be

+ 20poFaeﬁ(Ap)ad(AU)bc - 49pﬂfcangpF%e + ((Z —ba— B)
1 ced pcab o d e d ve

A |20 B F + O |

1
— 0 (R, B, — AL,

As already noted, they are written under the assumption (R.3).



3. Divergences
From (R.6) we read off the second functional derivative of the action:
(5(2) [Az])aa,,@b — ga,@é‘ab\:‘ + (Nl + No+To+Ts+ T4)aa,,8b. (31)

In order to calculate the effective action (R.4), we expand the logarithm. Denoting Z a8 —
G884y, we write

Tr log S@ [AZ] = Tr logZO + Tr log (I+ Dfl(Nl + No+Th + T3+ T4))

0 (_1)n+1 n
= Z T Tr (Dil(Nl + No+T5 + T3+ T4)) , (32)
n=1

where in the last equality the infinite normalization constant is neglected. The terms
which contribute to the divergent one-loop effective action in zero-th order are

] 1 1
o= % <—§Tr (071N + Tr ((O71N,)2O7EN,) — 7T (D1N1)4> ; (3.3)
so the divergent part is
gy = SN / d'zFe, Fre (3.4)
Vo 3(4n)2e Hv ’ ’

However, the ghost contribution should also be taken into account. It is derived from the
ghost action introduced as in [[L0, [[3, 4]

N
Conlaw = —— [ d*zF Frve, 3.5
gh’dl 6(47’()26/ x 1% ( )

Thus the sum of (B.4)) and (B.5) constitutes the standard result of the commutative theory.
Our goal is to calculate the 6-linear divergencies. As 6#* has the length dimension 2 and
FM is of dimension —2, the terms of the following types are possible: 0F3, (DF)?, 0eF3,
fe(DF)2. All of them have one 6 and six A’s: thus from (B.2) we need to extract the terms
which contain one of the vertices T; and have the sum of indices equal to 6. The trace to
be calculated is

g = % (=Tr [0 Ny~ ) + T (071 N,)2007 17 + T (072 N,) 2017
+ Tr [0 VO IN,O7 M) 4 Tr [O7 N0 N O T3] — T [(O72N)3 T3]
— Tr[(O7'N)2O7 N0 ) — T [0 N (O Ny )20 1Ty
— Tt [0 'V O VO N O] + Te (071N O 1)) (3.6)

In fact, using Bianchi identities it can easily be seen that all possible combinations of the
form 6(DF)? either vanish or reduce to 0F3. Further, as ¢*#° does not appear, only two
invariants, 0" F,,, F,; F'P7 and 0" F),,F,,FP?, are left at the end of the calculation. Note
that they are already present in the classical action (P.1)).



The procedure to calculate the divergencies in the traces is standard: first we write
the traces in the momentum representation, then find their divergent parts by dimensional

regularization. An example of this calculation is given in the Appendix. In the result we
get:

Tr[(O7'N)207 1Y) = ( 47:)26dabc / d*z[2(07 )y + 0,0 FP0) (AP AL AY Ay )y

1 g v
+ 507 Fp (A" A A" Ay )],

7

- - aoc 3 loa a 1%
Tr [(O71N,)20717y] = (M)%d b /d4:c {iap Fo (A AP AL A )y

1
o 2(‘9paFgﬁ + gﬂﬁF;a)(Fﬁ“nya)bc T §HpoFgo(Fava)bc} ’

1

Tr (O V)07 ') = ( 47T)26dabc / diz [gﬂp"F;U(AaAaAgAﬁ + Ay Ag A AP

2

+ AaAp AP Ao + (0, Fgo + 0, Fpy) <§AMAMAPAU
2 pango o L o AP Ak L ap B AT

T GAAPAPAT S AATAPAR - S APA AP A |

) 4
T (O N0 = (™ [t | S0 + 0P (4,40 4,

A, A AT AR 4 A AP AL A,

+

+

1
307 Fpo (AL AFALAY + A A AP AY AHAVA”A“)bc} :

Tr (O IN,(O7IN)?207 1 + (071N 201N, 0 71 + O N O N, O N, O 1T
i 7
de | dz | Z0P F% (24,A" A, A”
™ [ e [feE oA,
+ AL A AY AP,

2
5 (0P F 4 0o FP) (A, A AF AT +24,A7ALAY), |,

7

Tr [0~ N0 Ty = ( 4ﬂ)2€dabc / d* 2407 F (AP AP Ag A, )i

1 loa a 14 - a (e}
077 Fpo (Ay Ay AP A )y + 4if)po Fi (A FP AP

N
— 0P Fo (A Fop AP ). — %HWF“ )

pot



— 40P F L (AF Fog APy + 40077 F§ (Ao FP* Ag )y
— 2i0°P F, (AY FogAM)ap — 2i00,F s (AP FP Al),,
— 2, Fj, (AFFP* A7) + 2i0P7 (A FP Ay )y
+ 2NOP FS Fj, F%° — AN9PPF? FrevFe ).
and
Te (O N O INO7 M + O IN, 07N, 071 Ty)
i 1
de | draz[=0P7 FO (A, A% AgAP
(47)%e / x[Q po (Ao p
+ Ay A A% AR)y + 2077 F L (AF A, Ag A
+ A AP ALAY 24P ALAY A,y

b SO (FagF* Yo + 46,0 Fls (P F0),

— i0P7F (A" FogA? )y + 8ifpo Flig (A FOP AP),,

— 207 F 5, (FPH Fop)pe — 2077 F§,(Foo F*)pe

+ 0P FS, (F Fog)be + 077 Fig(Fop FP )y

— 4i0PF (AP Foap AP )y — 41077 F (A FOP A7)y,
— 2i0°PF, (A" Fog A )pe — 2007 Fg(As F*P Ay el

The difficult part, after summation of particular diagrams, is to transform the sum to
the covariant form. We obtain

11N 1
! ’div — 6(47T)26dabc / d4$[ZGPUFgJF3VFﬂVC _ HpoFgﬂngFﬂucL (3.7)

where at the end of the calculation we apply the formula from [[L], namely

A" Fiy(Fiu Fpo Yo = A" Fig P, Fip (TT )i

= gﬁijF;UTr (DOT9T®)

N d d
= A" FFLFy,

with (D%). = d®°. This is the only place where the assumption that fields are in the
adjoint representation is used. The full result for the one-loop divergent part of the effective
action to first order is

1 22N
Tagiy = —= (1 — ——— | [ d*xF® Frve
d 4( 3(471')26)/ O

1 22N 1
+ 3 (1 T 4@26) 677 4 / d'z (ZFg(,ngFWC — F3Fb, FWC> . (33)

From the last equation it is obvious that the one-loop correction to the effective action is
proportional to the classical action. The (B.§) can be rewritten in the form

1 22N
Tgpp = —-[1—- —"— d*zF® x Frve, )
div 4 < 3(471')2e>/ S (3:9)



4. Outlook and conclusions

In the presented calculation the coupling constant was fixed to be 1. However, in order
to renormalize the theory, we have to recover it. We take that, initially, the classical
lagrangian in 4 — € dimensions reads

1 1
L= —ZngFW“ + 76 gue oM A (e, FY FP7e — 4F? Fb FPoe), (4.1)
while the field strength is defined by
Fe — 9 A% — 9, A €/2 abcAbAc 4.9
[ 72 % l/,u+gu f (Vi 7 ()

The p is a parameter with the dimension of mass. To cancel divergencies we add countert-
erms to the initial action. The bare Lagrangian is the sum of the classical Lagrangian and
the counterterms; it reads

Lo=L+Lor (4.3)
1 22N g°

_ _ = F¢ prva
4 < * 3(47‘(‘)26> w

1 22N g 1
+3 (1 T3 477)926) 07 d**guc/? (ZF;,FSVFWC — ngFjaFW6> .

Introducing the bare quantities

22N g2
At = AFY 1
0 + 3(4m)2e’
€/2
go = —— (4.4)
14 22Ng?
3(4m)2e
we can rewrite the bare Lagrangian as
1 1
Ly = —ZF()ZVF()“VG + Egoeﬂydabc(FozyFQZUFopoc — 4FOZPFOZO_FOPJC), (4.5)
or,
1
L= ~1 0pu * FOM%. (4.6)

Note that, due to the fact that divergencies of kinetic and #-linear interaction terms have
the same factor, noncommutativity parameter # need not be renormalized. This rises hope
that the theory might be renormalizable to all orders in #. One can easily find the beta
function from ([£4): it is same as in the commutative case

5o dg _ 11Ng®
~Hou T T 3n)?

(4.7)

The theory is asymptotically free.



Formulae (f.4)—([§) mean that the noncommutative pure gauge SU(N) theory is one-
loop renormalizable to first order in #. Divergences can be absorbed in the redefinition of
the gauge potential and the gauge coupling constant. The renormalization is standard,
multiplicative: no Seiberg-Witten field redefinition is needed, as it was the case in similar
calculations [P}, [[1]. A different result would further strengthen the belief that field theories
on noncommutative Minkowski space are not renormalizable. As it is, it opens several
possibilities. The first possibility is that the gauge theories are renormalizable in the 6-
expanded approach because in this representation the gauge symmetry is introduced in
a natural way, via the covariant coordinates. Then fermions are probably inadequately
represented, as we know that their presence breaks renormalizability. An obvious further
step to check this claim is, for example, to find the second-order divergencies; also, one
could consider renormalizability at two loops. The other possible interpretation is that
renormalizability is obstructed by the use of Moyal-Weyl x-product [If]], and that the more
appropriate representation has to be found. In any case, the question deserves further
consideration.
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A. An example of trace calculation

In this appendix we present the calculation of the diagram Tr ((O~'N;)*0~!T3); other
terms in the one-loop effective action are computed in a similar manner.

Tr (O N0 IT) = /d4xd4yd4zd4ud4v 9" G(x — y)ngbﬁ(y)

x Gy — 2)Ni"(2)G (2 — u) N1 (u)
x G(u —v) N2 (0)G (v — 2)Tr5% (z)
d*z ppPphp? pPp®
-1 abc D PP EPF P
6d /(2ﬂ)4/d b (p?)P
X (AaAgAuAy)pe(20°0 7 + ig”"HEAF;&)- (A1)

All external momenta in vertices vanish, as a consequence of (P.§). The divergent part of
the previous integral is found by dimensional regularization. The result is

i 4
6(4m)%e /d (A0 AgALAL)be

Tr (O IN)AOIT) = a%

x (2007 + %gwangA)

X [9a8(9uw9po + GupGvo + GuoGuvp)
+ G (980 9po + 98p9ve + 950 9up)
+ 9o (98u9po + 9p9po + 950 9up)
+ 9ap(98u9ve + 980 9po + 960 Gup)
+ Yao (gﬁugup + 98v9up + 98p9ur ]

,10,



From the previous expression we get the final result

' 2
Tr (O7'N)' O] = ( 47:)26da”c / dix [gep"Fp@O(AaAo‘AgAﬁ + Ay AgA® AP

2
T AaAGAP A+ (0,0 F + 0,7 FS) (gAuA“APA”

+ %AﬂAPA“A" + éAﬂA"APA“ + éAPAﬂA“A">b } .

References

1]

S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics,
JHEP 02 (2000) 02( [hep-th/9912072;

I. Chepelev and R. Roiban, Renormalization of quantum field theories on noncommutative
R?, I. Scalars, THEP 05 (2000) 037 [hep-th/9911099]; Convergence theorem for
non-commutative Feynman graphs and renormalization, JHEP 03 (2001) 001
[hep-th/000809q;

C. Becchi, S. Giusto and C. Imbimbo, The renormalization of non-commutative field theories
in the limit of large non-commutativity, [Nucl. Phys. B 664 (2003) 371 [hep-th/0304159];
H. Grosse and R. Wulkenhaar, Renormalisation of ¢* theory on noncommutative R* in the
matriz base, [Commun. Math. Phys. 256 (2005) 304 [hep-th/040112§].

V. Gayral, J.M. Gracia-Bondia and F.R. Ruiz, Trouble with space-like noncommutative field
theory, [Phys. Lett. B 610 (2005) 141| [hep-th/0412234].

M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on R?,
[Phys. Lett. B 478 (2000) 394 [hep—th/9912094];

C.P. Martin and D. Sanchez-Ruiz, The one-loop uv divergent structure of U(1) Yang-Mills
theory on noncommutative R*, |Phys. Rev. Lett. 83 (1999) 476 [hep-th/9903077;

LF. Riad and M.M. Sheikh-Jabbari, Noncommutative qed and anomalous dipole moments,
JHEP 08 (2000) 04 [hep-th/0008132.

A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the non-commutative
gauge theories, JHEP 12 (2000) 003 [hep-th/0002075];
L. Bonora and M. Salizzoni, Renormalization of noncommutative U(N) gauge theories,

Lett. B 504 (2001) 8( [hep-th/0011084];

A. Armoni, Comments on perturbative dynamics of non-commutative Yang-Mills theory,
[Nucl. Phys. B 593 (2001) 229 [hep-th/0005208];

M. Van Raamsdonk, The meaning of infrared singularities in noncommutative gauge theories,
VHEP 11 (2001) 00§ [hep-th/0110093;

A. Armoni and E. Lopez, UV/IR mizing via closed strings and tachyonic instabilities,

Phys. B 632 (2002) 24(] [hep-th/0110113];

E. Nicholson, UV-IR mizing and the quantum consistency of noncommutative gauge theories,
[Phys. Rev. D 66 (2002) 105018 [hep-th/0211074].

J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces,
|[Fur. Phys. J. C 16 (2000) 161 [hep-th/0001203];
B. Jurco, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge

transformations for non-abelian gauge groups on mon-commutative spaces, |[Eur. Phys. J. O

17 (2000) 521| [hep-th/0006246];

- 11 —


http://jhep.sissa.it/stdsearch?paper=02%282000%29020
http://xxx.lanl.gov/abs/hep-th/9912072
http://jhep.sissa.it/stdsearch?paper=05%282000%29037
http://xxx.lanl.gov/abs/hep-th/9911098
http://jhep.sissa.it/stdsearch?paper=03%282001%29001
http://xxx.lanl.gov/abs/hep-th/0008090
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB664%2C371
http://xxx.lanl.gov/abs/hep-th/0304159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C256%2C305
http://xxx.lanl.gov/abs/hep-th/0401128
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB610%2C141
http://xxx.lanl.gov/abs/hep-th/0412235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB478%2C394
http://xxx.lanl.gov/abs/hep-th/9912094
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C476
http://xxx.lanl.gov/abs/hep-th/9903077
http://jhep.sissa.it/stdsearch?paper=08%282000%29045
http://xxx.lanl.gov/abs/hep-th/0008132
http://jhep.sissa.it/stdsearch?paper=12%282000%29002
http://xxx.lanl.gov/abs/hep-th/0002075
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB504%2C80
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB504%2C80
http://xxx.lanl.gov/abs/hep-th/0011088
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB593%2C229
http://xxx.lanl.gov/abs/hep-th/0005208
http://jhep.sissa.it/stdsearch?paper=11%282001%29006
http://xxx.lanl.gov/abs/hep-th/0110093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB632%2C240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB632%2C240
http://xxx.lanl.gov/abs/hep-th/0110113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C105018
http://xxx.lanl.gov/abs/hep-th/0211076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC16%2C161
http://xxx.lanl.gov/abs/hep-th/0001203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC17%2C521
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC17%2C521
http://xxx.lanl.gov/abs/hep-th/0006246

B. Jurco, L. Moller, S. Schraml, P. Schupp and J. Wess, Construction of non-abelian gauge
theories on noncommutative spaces, [Eur. Phys. J. C 21 (2001) 383 [hep-th/0104153ﬂ.

N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032

T. Asakawa and I. Kishimoto, Comments on gauge equivalence in noncommutative geometry,

R. Wulkenhaar, Non-renormalizability of theta-expanded noncommutative QED, |JHEP 0

M. Buri¢ and V. Radovanovié¢, The one-loop effective action for quantum electrodynamics on
noncommutative space, JHEP 10 (2002) 074 [hep-th/0208204).

M. Buri¢ and V. Radovanovié¢, Non-renormalizability of noncommutative SU(2) gauge theory,

JHEP 02 (2004) 04(] [hep-th/0401103|; On divergent S-vertices in noncommautative SU(2)
gauge theory, [Class. and Quant. Grav. 22 (2005) 52§ [hep-th/0410085].

A. Bichl et al., Renormalization of the noncommutative photon self-energy to all orders via
Seiberg- Witten map, JHEP 06 (2001) 013 [hep-th/0104097].

G. 't Hooft, An algorithm for the poles at dimension four in the dimensional reqularization

S. Weinberg, The quantum theory of fields, vol. II, Cambridge University Press, New York,

M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory Addison Wesley,

J.A. de Azcarraga, A.J. Macfarlane, A.J. Mountain and J.C. Perez Bueno, Invariant tensors
for simple groups, |[Nucl. Phys. B 510 (1998) 657 [physics/9706006].

[6]
[rep-th/9908147.
[7]
VHEP 11 (1999) 024 [hep-th/9909139|.
8]
(2002) 024 [hep-th/0112244].
[9]
[10]
[11]
[12]
procedure, [Nucl. Phys. B 62 (1973) 444.
[13]
1996.
[14]
Reading, 1995.
[15]
[16] J. Madore, private communication.

- 12 —


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC21%2C383
http://xxx.lanl.gov/abs/hep-th/0104153
http://jhep.sissa.it/stdsearch?paper=09%281999%29032
http://xxx.lanl.gov/abs/hep-th/9908142
http://jhep.sissa.it/stdsearch?paper=11%281999%29024
http://xxx.lanl.gov/abs/hep-th/9909139
http://jhep.sissa.it/stdsearch?paper=03%282002%29024
http://jhep.sissa.it/stdsearch?paper=03%282002%29024
http://xxx.lanl.gov/abs/hep-th/0112248
http://jhep.sissa.it/stdsearch?paper=10%282002%29074
http://xxx.lanl.gov/abs/hep-th/0208204
http://jhep.sissa.it/stdsearch?paper=02%282004%29040
http://xxx.lanl.gov/abs/hep-th/0401103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C525
http://xxx.lanl.gov/abs/hep-th/0410085
http://jhep.sissa.it/stdsearch?paper=06%282001%29013
http://xxx.lanl.gov/abs/hep-th/0104097
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB62%2C444
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB510%2C657
http://xxx.lanl.gov/abs/physics/9706006

