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1. Introduction

The early motivation to introduce noncommutativity of coordinates was the search for

invariant regulator in field theory. Many other reasons for studying noncommutative man-

ifolds have appeared since; still, the renormalizability of field theories, on noncommutative

Minkowski space for example, has not been established. The aim of this paper is to add

further results to this discussion.

To introduce the problem and the notation, we give a couple of basic definitions.

Noncommutative Minkowski space is the algebra generated by coordinates x̂µ, µ = 0, 1, 2, 3,

which obey the commutation relations of canonical type:

[x̂µ, x̂ν ] = iθµν = const. (1.1)

The algebra (1.1) can be represented by the algebra of functions on commutative four-

dimensional manifold with the Moyal-Weyl product as multiplication. The latter is de-

fined as

φ(x) ? χ(x) = e
i
2

θµν ∂
∂xµ

∂
∂yν φ(x)χ(y)|y→x . (1.2)

The fields are functions of coordinates; for example, the vector potential Âµ(x) of the gauge

group U(N) is, in this context, defined by

Âµ(x) = ÂA
µ (x)tA, (1.3)

where tA are ordinary N × N matrices, generators of U(N). We denote the generators of

SU(N) by ta: the capital letters denote the U(N) indices, while the small letters denote the

SU(N) indices, tA ∈ {I, ta}. The field strength transforms in the adjoint representation;

it is given by

F̂µν = ∂µÂν − ∂νÂµ − i(Âµ ? Âν − Âν ? Âµ). (1.4)
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The generators of SU(N) satisfy

[ta, tb] = ifabctc, {ta, tb} = dabctc, (1.5)

fabc are the structure constants of SU(N), dabc are the symmetric symbols, dabc = Tr {ta

, tb}tc: we use the normalization Tr (tatb) = δab. For gauge groups different from U(N)

the commutator term in (1.4) does not take values in the Lie algebra of the group, as the

?-product is not commutative. It is clear therefore that not all gauge groups can be realized

on the space (1.1) in the described manner.

As the gauge fields are represented by functions on R
4, the integration and the action

can be defined straightforwardly. The action for the pure gauge theory reads

S = −
1

4
Tr

∫

d4xF̂µν ? F̂µν = −
1

4
Tr

∫

d4xF̂µν F̂µν , (1.6)

the last equality is valid due to properties of the Moyal-Weyl multiplication. One can

easily include matter fields. This basically concludes the definition of the classical theory.

Compared to the commutative gauge theory, it has new, specific features. For quantization,

one usually takes θ0i = 0 as in that case there are no temporal derivatives of higher

order in the lagrangian. This means that the generalized momenta are the same as in the

classical theory and the momentum dependence in the path integral is Gaussian. Stated

differently, θ0i = 0 provides the unitarity. In perturbation expansion Feynman rules get

modified in accordance with the definition of ?-multiplication. The most important result

concerning renormalization is the mixing of ultraviolet and infrared divergencies: in higher-

order diagrams they are entangled in such a way that no efficient renormalization procedure

can be defined. This phenomenon is typical for noncommutative theories and has been

thoroughly discussed for φ4 theory, [1]. See also the alternative heat-kernel derivation in

[2]. The existence of gauge symmetry does not remove UV/IR mixing: for more detailed

analysis for U(1) we refer to [3], for nonabelian theories to [4]. Consequently, the status

of renormalizability of noncommutative gauge theories is the same as for noncommutative

scalar field theory: in general, the theories are not renormalizable.

A different representation of noncommutative gauge theories on commutative R
4 was

developed in [5]. Its main idea is to enlarge the basis of the algebra to the enveloping alge-

bra of the group. Although only the infinitesimal gauge transformations can be defined in

this way, the construction goes for arbitrary gauge groups and their tensor products. As

it was shown in [5], every physical field can written as a formal expansion in noncommu-

tativity parameter θµν ; the leading term in the expansion of noncommutative field is its

commutative counterpart. Therefore, for θµν = 0 noncommutative theory reduces to the

usual, commutative one: the representation is a deformation of the commutative theory.

This fact can also be related to the Seiberg-Witten result [6] that classically noncommuta-

tive and commutative gauge theories are equivalent. The expansions of the vector potential

and the field strength to linear order in θ read

Âρ(x) = Aρ(x) −
1

4
θµν {Aµ(x), ∂νAρ(x) + Fνρ(x)} + . . . (1.7)

F̂ρσ(x) = Fρσ(x) +
1

2
θµν{Fµρ(x), Fνσ(x)} −

1

4
θµν{Aµ(x), (∂ν + Dν)Fρσ(x)} + . . . ,
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and, as it was noted in [7], are not unique. The gauge field action (1.6) can be expanded,

too. The parameter θ is treated as a coupling constant and thus propagators of all fields are

defined as in the commutative theory. It can be shown that each of the interaction terms

is invariant to commutative gauge transformations; noncommutative gauge symmetry is

recorded only in the complete sum (1.7).

Obviously, a drawback of the ‘θ-expanded’ approach is that the results are necessarily

expressed in powers of θ and calculated to a certain order: in practice, at most to second

order. Thus one cannot obtain results which are nonanalytic in θ: and UV/IR mixing is an

effect proportional to θ−1. On the other hand, it does make very good sense to expand in

θ if one wants to compare with the experiment: if exists, noncommutativity is very small.

The question of renormalizability can be approached as well; in particular, negative results

which one might obtain can be regarded conclusive. Let us stress that, in principle, there

is no reason to expect to get the same results as for the nonexpanded theory, as the two

representations of the gauge symmetry are different; in fact, SU(N) cannot even be defined

in the nonexpanded representation. It was shown in [8 – 10] that U(1) and SU(2) gauge

theories with fermions are not renormalizable: the divergencies which cannot be removed

exist both at θ-linear and θ-quadratic level. The results concerning pure gauge theories

on the other hand, are somewhat partial: for example, the photon propagator in U(1)

theory is renormalizable in a generalized sense, to linear and possibly to all orders, [11].

Similar statement holds for the gluon propagator in SU(2) to linear order, [10]. In this

paper we investigate renormalizability of the first order-corrected SU(N) theory: as we

shall see from the form of divergencies, theory is in this order renormalizable. This result,

we think, keeps the discussion on the renormalizability of field theories on noncommutative

Minkowski space open.

The plan of the paper is the following. In the next section we expand the classical

action to second order in quantum fields and do the path integral quantization. In the

third section we present the result of the calculation of divergencies in the one-loop effective

action and we show that the action can be renormalized in a very simple way. A summary

of the results is given in the concluding section.

2. Expansion in background fields

The classical action for the gauge field expanded to first order in noncommutativity is [5]:

Scl = −
1

4
Tr

∫

d4xF̂µν ? F̂µν

= Tr

∫

d4x

(

−
1

4
FµνFµν +

1

8
θµνFµνFρσF ρσ −

1

2
θµνFµρFνσF ρσ

)

(2.1)

=

∫

d4x

(

−
1

4
F a

µνFµνa +
1

16
θµνdabc(F a

µνF b
ρσF ρσc − 4F a

µρF
b
νσF ρσc)

)

.

We are dealing with the gauge group SU(N): a, b, c = 1, . . . , N2 − 1 are the group

indices. The group metric is Euclidean so there is no need to distinguish between upper

and lower indices. The gauge fields are assumed to be in the adjoint representation; we
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will comment further on this restriction. We quantize the theory by functional integration

of the vector potential. The integration is done around the classical configuration, i.e., we

use the background field method to find the effective action. The main contribution to the

integral is given by the Gaussian integral: to find it, technically, we need to write the vector

potential in the action as a sum of the background part Aa
µ and the quantum fluctuation Aa

µ,

and find the part quadratic in Aa
µ. By this we determine the second functional derivative of

the classical action with respect to the vector potential. In the saddle-point approximation,

the result of the functional integration is

Γ[Aa
µ] = S[Aa

µ] +
i

2
log detS(2)[Aa

µ]. (2.2)

We are dealing with the gauge symmetry and therefore the gauge fixing term has to be

included in the action as well:

S = Scl + Sgf , Sgf = −
1

2

∫

d4x(DµA
µa)2, (2.3)

with DµA
a
ν = ∂µA

a
ν + fabcAb

µA
c
ν. The one-loop effective action,

Γ1[Aa
µ] =

i

2
log det S(2)[Aa

µ] =
i

2
Tr log S(2)[Aa

µ], (2.4)

can be obtained in the usual way, by perturbative expansion of the logarithm. As we

already explained the method in details in [9], we discuss here only the points specific to

the present calculation.

In the case we are studying, the quadratic part of the action is very complicated. Very

involved too are the operator traces whose divergent parts we calculate by dimensional

regularization. It is necessary therefore to develop a strategy already at this stage. We will

calculate the divergencies at the special, constant value of the classical vector potential,

Aa
µ = const. (2.5)

At the end of the calculation the full expressions will be restored from covariance, replacing

fabcAb
µAc

ν by F a
µν . The idea is not new; for a similar derivation see [13]. The use of

background field method guarantees the covariance [14], as doing the path integral, we fix

the local symmetry of the quantum field Aa
µ while the gauge symmetry of the background

field Aa
µ is manifestly preserved. Having in mind the dimension-regularization formulae,

we see that in fact it is an advantage to deal with nonabelian theory, as the terms without

derivatives are by far the simplest. At the moment, the assumption (2.5) means just that

derivatives commute with Aa
µ in S(2)[Aa

µ].

Extracting the quadratic part of the action is a straightforward but tedious calculation.

The result has the form

S(2) =
1

2
Aa

α

[

gαβδab¤ + (N1 + N2 + T2 + T3 + T4)
αa,βb

]

Ab
β. (2.6)

The operators N1 and N2 originate from the commutative action, while T2, T3 and T4

denote interaction terms linear in θ. The index of the operator indicates the number of

background fields Aa
µ which it contains. The operators are given by

(N1)
αa,βb = −2fabcAc

µgαβ∂µ = −2i(Aµ)abg
αβ∂µ, (2.7)
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where we introduced the matrix notation

(Aµ)ab = −ifabcAc
µ = Ac

µ(T c)ab, (2.8)

because the structure constants are the matrix elements of generators in the adjoint rep-

resentation. The same notation will be used for the field strengths as it is very useful. For

example,

(A1 . . . A2n)ab = (A2n . . . A1)ba, (A1 . . . A2n+1)ab = −(A2n+1 . . . A1)ba. (2.9)

The rest of the vertices in (2.6) read

(N2)
ab
αβ = −2f cabF c

αβ − (AµAµ)abgαβ , (2.10)

(T2)
ab
αβ =

1

4
dabc

[

−2θραF c
µβ∂µ∂ρ − 2θρβF c

µα∂µ∂ρ − θρσF c
ρσgαβ¤ + θρσF c

ρσ∂α∂β

+ 2θρ
αF c

µρ∂
µ∂β + 2θρ

βF c
µρ∂

µ∂α − 2θρ
βF c

αρ¤ − 2θρ
αF c

βρ¤ − 4θρσF c
µρgαβ∂µ∂σ

+ 2θρσF c
βρ∂α∂σ + 2θρσF c

αρ∂β∂σ − 2θασF c
µβ∂µ∂σ − 2θρ

βF c
αν∂ν∂ρ

]

,

(T3)
ab
αβ = −

i

4
dacd

[

2θραF d
µβ(Aµ)bc∂

ρ + 2θρβF d
µα(Aρ)bc∂

µ

+ θρσgαβF d
ρσ(Aµ)bc∂µ − θρσF d

ρσ(Aα)bc∂β

− 2θρ
αF d

µρ(A
µ)bc∂β + 2θρ

αF d
βρ(A

ν)bc∂ν

+ 2θρσgαβF d
µρ(A

µ)bc∂σ − 2θρσF d
βρ(Aα)bc∂σ − 2θρ

βF d
µρ(A

α)bc∂
µ

+ 2θρ
βF d

αρ(A
ν)bc∂ν + 2θρσgαβF d

µρ(A
σ)bc∂

µ − 2θρσF d
αρ(Aσ)bc∂

β

− 2θαβF d
µν(Aν)bc∂

µ + 2θασF d
µβ(Aσ)bc∂

µ + 2θρβF d
αν(Aν)bc∂

ρ

− 2θρσF d
αβ(Aσ)bc∂ρ − (a ↔ b, α ↔ β)

]

,

and

(T4)
ab
αβ =

1

8
dced

[

−4θραF e
µβ(Aρ)ad(A

µ)bc − θρσgαβF e
ρσ(Aµ)ad(Aµ)bc

+ θρσF e
ρσ(Aβ)da(Aα)cb + 4θρ

αF e
µρ(Aβ)ad(A

µ)bc

− 4θρ
αF e

βρ(A
ν)ad(Aν)bc − 4θρσgαβF e

µρ(Aσ)ad(A
µ)bc

+ 4θρσF e
βρ(A

σ)ad(Aα)bc + 2θαβF e
µν(Aµ)ad(A

ν)bc

− 2θαρF
e
µβ(Aµ)ad(A

ρ)bc − 2θρβF e
αν(Aρ)ad(A

ν)bc

+ 2θρσF e
αβ(Aρ)ad(A

σ)bc − 4θρ
βf cabF d

µρF
µ
α

e + (a ↔ b, α ↔ β)
]

+
1

8
dcedf cab

[

2θρσF d
ρσF e

αβ + θαβF d
µνFµνe

]

−
1

4
θρσf cabdcde(F d

αρF
e
βσ − F d

βρF
e
ασ).

As already noted, they are written under the assumption (2.5).

– 5 –



J
H
E
P
0
2
(
2
0
0
6
)
0
4
6

3. Divergences

From (2.6) we read off the second functional derivative of the action:

(S(2)[Aa
µ])αa,βb = gαβδab¤ + (N1 + N2 + T2 + T3 + T4)

αa,βb. (3.1)

In order to calculate the effective action (2.4), we expand the logarithm. Denoting Iαa,βb =

gαβδab, we write

Tr log S(2)[Aa
µ] = Tr log I¤ + Tr log

(

I + ¤
−1(N1 + N2 + T2 + T3 + T4)

)

=
∞

∑

n=1

(−1)n+1

n
Tr

(

¤
−1(N1 + N2 + T2 + T3 + T4)

)n
, (3.2)

where in the last equality the infinite normalization constant is neglected. The terms

which contribute to the divergent one-loop effective action in zero-th order are

Γ0 =
i

2

(

−
1

2
Tr (¤−1N2)

2 + Tr ((¤−1N1)
2
¤

−1N2) −
1

4
Tr (¤−1N1)

4

)

; (3.3)

so the divergent part is

Γ0|div =
5N

3(4π)2ε

∫

d4xF a
µνFµνa. (3.4)

However, the ghost contribution should also be taken into account. It is derived from the

ghost action introduced as in [10, 12, 14]

Γgh|div =
N

6(4π)2ε

∫

d4xF a
µνFµνa. (3.5)

Thus the sum of (3.4) and (3.5) constitutes the standard result of the commutative theory.

Our goal is to calculate the θ-linear divergencies. As θµν has the length dimension 2 and

Fµν is of dimension −2, the terms of the following types are possible: θF 3, θ(DF )2, θεF 3,

θε(DF )2. All of them have one θ and six A’s: thus from (3.2) we need to extract the terms

which contain one of the vertices Ti and have the sum of indices equal to 6. The trace to

be calculated is

Γ1|div =
i

2

(

−Tr [¤−1N2¤
−1T4] + Tr [(¤−1N1)

2
¤

−1T4] + Tr [(¤−1N2)
2
¤

−1T2]

+ Tr [¤−1N1¤
−1N2¤

−1T3] + Tr [¤−1N2¤
−1N1¤

−1T3] − Tr [(¤−1N1)
3T3]

− Tr [(¤−1N1)
2
¤

−1N2¤
−1T2] − Tr [¤−1N2(¤

−1N1)
2
¤

−1T2]

− Tr [¤−1N1¤
−1N2¤

−1N1¤
−1T2] + Tr [(¤−1N1)

4
¤

−1T2]
)

. (3.6)

In fact, using Bianchi identities it can easily be seen that all possible combinations of the

form θ(DF )2 either vanish or reduce to θF 3. Further, as εµνρσ does not appear, only two

invariants, θµνFµνFρσF ρσ and θµνFµρFνσF ρσ, are left at the end of the calculation. Note

that they are already present in the classical action (2.1).
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The procedure to calculate the divergencies in the traces is standard: first we write

the traces in the momentum representation, then find their divergent parts by dimensional

regularization. An example of this calculation is given in the Appendix. In the result we

get:

Tr [(¤−1N1)
2
¤

−1T4] =
i

(4π)2ε
dabc

∫

d4x[2(θραF b
µα + θµαF ραb)(AµAνA

νAρ)bc

+
1

2
θρσF b

ρσ(AµAνAνAµ)bc],

Tr [(¤−1N2)
2
¤

−1T2] =
i

(4π)2ε
dabc

∫

d4x

[

3

2
θρσF a

ρσ(AµAµAνAν)bc

− 2(θρ
αF a

ρβ + θρ
βF a

ρα)(F βγFγ
α)bc +

1

2
θρσF a

ρσ(FαγFαγ)bc

]

,

Tr [(¤−1N1)
4
¤

−1T2] =
i

(4π)2ε
dabc

∫

d4x

[

2

3
θρσF a

ρσ(AαAαAβAβ + AαAβAαAβ

+ AαAβAβAα)bc + (θ α
ρ F a

σα + θ α
σ F a

ρα)

(

2

3
AµAµAρAσ

+
2

3
AµAρAµAσ +

1

3
AµAσAρAµ +

1

3
AρAµAµAσ

)

bc

]

,

Tr [(¤−1N1)
3
¤

−1T3] =
i

(4π)2ε
dabc

∫

d4x

[

4

3
(θραF a

σα + θσαF ραa)(AρA
σAµAµ

+ AρAµAσAµ + AρA
µAµAσ)bc

+
1

3
θρσF a

ρσ(AµAµAνA
ν + AµAνA

µAν + AµAνA
νAµ)bc

]

,

Tr [¤−1N2(¤
−1N1)

2
¤

−1T2 + (¤−1N1)
2
¤

−1N2¤
−1T2 + ¤

−1N1¤
−1N2¤

−1N1¤
−1T2]

=
i

(4π)2ε
dabc

∫

d4x

[

7

6
θρσF a

ρσ(2AµAµAνAν

+ AµAνAνAµ)bc

+
2

3
(θραF a

σα + θσαF ραa)(AρAµAµAσ + 2AρA
σAµAµ)bc

]

,

Tr [¤−1N2¤
−1T4] =

i

(4π)2ε
dabc

∫

d4x[4θραF a
µα(AµAβAβAρ)bc

+
1

2
θρσF a

ρσ(AνAµAµAν)bc + 4iθραF a
µβ(AµFαβAρ)bc

− iθρσF a
ρσ(AαFαβAβ)bc −

3N

2
θρσF a

ρσF b
αβFαβc

– 7 –
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− 4iθραF a
µρ(A

µFαβAβ)bc + 4iθρσF a
βρ(AαF βαAσ)bc

− 2iθαβF a
µν(AνFαβAµ)ab − 2iθαρF

a
µβ(AρF βαAµ)bc

− 2iθβσF a
µα(AµF βαAσ)bc + 2iθρσF a

αβ(AσF βαAρ)bc

+ 2NθρσF a
αρF

b
βσFαβc − 4NθρβF a

µρF
µαbF c

βα],

and

Tr (¤−1N1¤
−1N2¤

−1T3 + ¤
−1N2¤

−1N1¤
−1T3)

=
i

(4π)2ε
dabc

∫

d4x[
1

2
θρσF a

ρσ(AαAαAβAβ

+ AµAαAαAµ)bc + 2θρσF a
µσ(AµAρAαAα

+ AρA
µAαAα + 2AµAαAαAρ)bc

+
1

2
θρσF a

ρσ(FαβFαβ)bc + 4θραF a
µβ(F ρµFαβ)bc

− iθρσF a
ρσ(AαFαβAβ)bc + 8iθραF a

µβ(AµFαβAρ)bc

− 2θραF a
µρ(F

βµFαβ)bc − 2θρσF a
βρ(FσαFαβ)bc

+ θαβF a
ρν(F νρFαβ)bc + θρσF a

αβ(FσρF
αβ)bc

− 4iθραF a
µρ(A

µFαβAβ)bc − 4iθρσF a
βρ(AαFαβAσ)bc

− 2iθαβF a
µν(AνFαβAµ)bc − 2iθρσF a

αβ(AσFαβAρ)bc].

The difficult part, after summation of particular diagrams, is to transform the sum to

the covariant form. We obtain

Γ1|div = −
11N

6(4π)2ε
dabc

∫

d4x[
1

4
θρσF a

ρσF b
µνFµνc − θρσF a

ρµF b
σνFµνc], (3.7)

where at the end of the calculation we apply the formula from [15], namely

dabcF a
αβ(FµνFρσ)bc = dabcF a

αβF d
µνF e

ρσ(T dT e)bc

= F a
αβF d

µνF e
ρσTr (DaT dT e)

=
N

2
dadeF a

αβF d
µνF e

ρσ,

with (Da)bc = dabc. This is the only place where the assumption that fields are in the

adjoint representation is used. The full result for the one-loop divergent part of the effective

action to first order is

Γdiv = −
1

4

(

1 −
22N

3(4π)2ε

)
∫

d4xF a
µνFµνa

+
1

4

(

1 −
22N

3(4π)2ε

)

θρσdabc

∫

d4x

(

1

4
F a

ρσF b
µνFµνc − F a

µρF
b
νσFµνc

)

. (3.8)

From the last equation it is obvious that the one-loop correction to the effective action is

proportional to the classical action. The (3.8) can be rewritten in the form

Γdiv = −
1

4

(

1 −
22N

3(4π)2ε

)
∫

d4xF a
µν ? Fµνa. (3.9)
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4. Outlook and conclusions

In the presented calculation the coupling constant was fixed to be 1. However, in order

to renormalize the theory, we have to recover it. We take that, initially, the classical

lagrangian in 4 − ε dimensions reads

L = −
1

4
F a

µνFµνa +
1

16
gµε/2θµνdabc(F a

µνF b
ρσF ρσc − 4F a

µρF
b
νσF ρσc), (4.1)

while the field strength is defined by

F a
µν = ∂µAa

ν − ∂νA
a
µ + gµε/2fabcAb

µAc
ν . (4.2)

The µ is a parameter with the dimension of mass. To cancel divergencies we add countert-

erms to the initial action. The bare Lagrangian is the sum of the classical Lagrangian and

the counterterms; it reads

L0 = L + LCT (4.3)

= −
1

4

(

1 +
22Ng2

3(4π)2ε

)

F a
µνFµνa

+
1

4

(

1 +
22Ng2

3(4π)2ε

)

θρσdabcgµε/2

(

1

4
F a

ρσF b
µνFµνc − F a

µρF
b
νσFµνc

)

.

Introducing the bare quantities

A0
µa = Aµa

√

1 +
22Ng2

3(4π)2ε
,

g0 =
gµε/2

√

1 + 22Ng2

3(4π)2ε

, (4.4)

we can rewrite the bare Lagrangian as

L0 = −
1

4
F0

a
µνF0

µνa +
1

16
g0θ

µνdabc(F0
a
µνF0

b
ρσF0

ρσc − 4F0
a
µρF0

b
νσF0

ρσc), (4.5)

or,

L = −
1

4
F0

a
µν ? F0

µνa. (4.6)

Note that, due to the fact that divergencies of kinetic and θ-linear interaction terms have

the same factor, noncommutativity parameter θ need not be renormalized. This rises hope

that the theory might be renormalizable to all orders in θ. One can easily find the beta

function from (4.4): it is same as in the commutative case

β = µ
∂g

∂µ
= −

11Ng3

3(4π)2
. (4.7)

The theory is asymptotically free.
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Formulae (4.4)–(4.5) mean that the noncommutative pure gauge SU(N) theory is one-

loop renormalizable to first order in θ. Divergences can be absorbed in the redefinition of

the gauge potential and the gauge coupling constant. The renormalization is standard,

multiplicative: no Seiberg-Witten field redefinition is needed, as it was the case in similar

calculations [9, 11]. A different result would further strengthen the belief that field theories

on noncommutative Minkowski space are not renormalizable. As it is, it opens several

possibilities. The first possibility is that the gauge theories are renormalizable in the θ-

expanded approach because in this representation the gauge symmetry is introduced in

a natural way, via the covariant coordinates. Then fermions are probably inadequately

represented, as we know that their presence breaks renormalizability. An obvious further

step to check this claim is, for example, to find the second-order divergencies; also, one

could consider renormalizability at two loops. The other possible interpretation is that

renormalizability is obstructed by the use of Moyal-Weyl ?-product [16], and that the more

appropriate representation has to be found. In any case, the question deserves further

consideration.
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A. An example of trace calculation

In this appendix we present the calculation of the diagram Tr ((¤−1N1)
4
¤

−1T2); other

terms in the one-loop effective action are computed in a similar manner.

Tr ((¤−1N1)
4
¤

−1T2) =

∫

d4xd4yd4zd4ud4v gακG(x − y)N1
ab
αβ(y)

× G(y − z)N1
βγbc(z)G(z − u)N1

cd
γδ(u)

× G(u − v)N1
δλde(v)G(v − x)T2

ea
λκ(x)

= 16dabc

∫

d4x

(2π)4

∫

dDp
pαpβpµpνpρpσ

(p2)5

× (AαAβAµAν)bc(2θ
σ
εF

ρεa +
1

4
gρσθελF a

ελ). (A.1)

All external momenta in vertices vanish, as a consequence of (2.5). The divergent part of

the previous integral is found by dimensional regularization. The result is

Tr ((¤−1N1)
4
¤

−1T2) = dabc i

6(4π)2ε

∫

d4x(AαAβAµAν)bc

× (2θσ
εF

ρεa +
1

4
gρσθελF a

ελ)

× [gαβ(gµνgρσ + gµρgνσ + gµσgνρ)

+ gαµ(gβνgρσ + gβρgνσ + gβσgνρ)

+ gαν(gβµgρσ + gβρgµσ + gβσgµρ)

+ gαρ(gβµgνσ + gβνgµσ + gβσgνµ)

+ gασ(gβµgνρ + gβνgµρ + gβρgµν)] .
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From the previous expression we get the final result

Tr [(¤−1N1)
4
¤

−1T2] =
i

(4π)2ε
dabc

∫

d4x

[

2

3
θρσF a

ρσ(AαAαAβAβ + AαAβAαAβ

+ AαAβAβAα)bc + (θ α
ρ F a

σα + θ α
σ F a

ρα)

(

2

3
AµAµAρAσ

+
2

3
AµAρAµAσ +

1

3
AµAσAρAµ +

1

3
AρAµAµAσ

)

bc

]

.
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B. Jurčo, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge

transformations for non-abelian gauge groups on non-commutative spaces, Eur. Phys. J. C

17 (2000) 521 [hep-th/0006246];

– 11 –

http://jhep.sissa.it/stdsearch?paper=02%282000%29020
http://xxx.lanl.gov/abs/hep-th/9912072
http://jhep.sissa.it/stdsearch?paper=05%282000%29037
http://xxx.lanl.gov/abs/hep-th/9911098
http://jhep.sissa.it/stdsearch?paper=03%282001%29001
http://xxx.lanl.gov/abs/hep-th/0008090
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB664%2C371
http://xxx.lanl.gov/abs/hep-th/0304159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C256%2C305
http://xxx.lanl.gov/abs/hep-th/0401128
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB610%2C141
http://xxx.lanl.gov/abs/hep-th/0412235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB478%2C394
http://xxx.lanl.gov/abs/hep-th/9912094
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C476
http://xxx.lanl.gov/abs/hep-th/9903077
http://jhep.sissa.it/stdsearch?paper=08%282000%29045
http://xxx.lanl.gov/abs/hep-th/0008132
http://jhep.sissa.it/stdsearch?paper=12%282000%29002
http://xxx.lanl.gov/abs/hep-th/0002075
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB504%2C80
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB504%2C80
http://xxx.lanl.gov/abs/hep-th/0011088
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB593%2C229
http://xxx.lanl.gov/abs/hep-th/0005208
http://jhep.sissa.it/stdsearch?paper=11%282001%29006
http://xxx.lanl.gov/abs/hep-th/0110093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB632%2C240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB632%2C240
http://xxx.lanl.gov/abs/hep-th/0110113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C105018
http://xxx.lanl.gov/abs/hep-th/0211076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC16%2C161
http://xxx.lanl.gov/abs/hep-th/0001203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC17%2C521
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC17%2C521
http://xxx.lanl.gov/abs/hep-th/0006246


J
H
E
P
0
2
(
2
0
0
6
)
0
4
6
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